Flyttande medelprognos Inledning. Som du kan gissa vi tittar på några av de mest primitiva metoderna för prognoser. Men förhoppningsvis är dessa åtminstone en värdefull introduktion till några av de datorproblem som är relaterade till att implementera prognoser i kalkylblad. I den här vägen fortsätter vi med att börja i början och börja arbeta med Moving Average prognoser. Flyttande medelprognoser. Alla är bekanta med att flytta genomsnittliga prognoser oavsett om de tror att de är. Alla studenter gör dem hela tiden. Tänk på dina testresultat i en kurs där du kommer att ha fyra tester under semestern. Vi antar att du fick en 85 på ditt första test. Vad skulle du förutse för ditt andra testresultat Vad tycker du att din lärare skulle förutsäga för nästa testresultat Vad tycker du att dina vänner kan förutsäga för nästa testresultat Vad tror du att dina föräldrar kan förutsäga för nästa testresultat Oavsett om Allt du kan göra med dina vänner och föräldrar, de och din lärare är mycket troliga att vänta dig på att få något i det 85-tal som du just fått. Nåväl, nu kan vi anta att trots din egen marknadsföring till dina vänner överskattar du dig själv och räknar att du kan studera mindre för det andra testet och så får du en 73. Nu är vad alla berörda och oroade kommer att Förutse att du kommer att få ditt tredje test Det finns två mycket troliga metoder för att de ska kunna utveckla en uppskattning oavsett om de kommer att dela den med dig. De kan säga till sig själva: "Denna kille sprider alltid rök om hans smarts. Hes kommer att få ytterligare 73 om han är lycklig. Kanske kommer föräldrarna att försöka vara mer stödjande och säga, quote, hittills har du fått en 85 och en 73, så kanske du ska räkna med att få en (85 73) 2 79. Jag vet inte, kanske om du gjorde mindre fest och werent vaggar väsan överallt och om du började göra mycket mer studerar kan du få en högre poäng. quot Båda dessa uppskattningar flyttade faktiskt genomsnittliga prognoser. Den första använder endast din senaste poäng för att förutse din framtida prestanda. Detta kallas en glidande genomsnittlig prognos med en period av data. Den andra är också en rörlig genomsnittlig prognos men använder två dataperioder. Låt oss anta att alla dessa människor bråkar på ditt stora sinne, har gissat dig och du bestämmer dig för att göra det bra på det tredje testet av dina egna skäl och att lägga ett högre poäng framför din quotalliesquot. Du tar testet och din poäng är faktiskt en 89 Alla, inklusive dig själv, är imponerade. Så nu har du det sista testet av terminen som kommer upp och som vanligt känner du behovet av att ge alla till att göra sina förutsägelser om hur du ska göra på det sista testet. Jo, förhoppningsvis ser du mönstret. Nu kan du förhoppningsvis se mönstret. Vilken tror du är den mest exakta whistle medan vi jobbar. Nu återvänder vi till vårt nya rengöringsföretag som startas av din främmande halvsyster som heter Whistle While We Work. Du har några tidigare försäljningsdata som representeras av följande avsnitt från ett kalkylblad. Vi presenterar först data för en treårs glidande medelprognos. Posten för cell C6 ska vara Nu kan du kopiera den här cellformeln ner till de andra cellerna C7 till och med C11. Lägg märke till hur genomsnittet rör sig över de senaste historiska data men använder exakt de tre senaste perioderna som finns tillgängliga för varje förutsägelse. Du bör också märka att vi inte verkligen behöver göra förutsägelser för de senaste perioderna för att utveckla vår senaste förutsägelse. Detta är definitivt annorlunda än exponentiell utjämningsmodell. Ive inkluderade quotpast predictionsquot eftersom vi kommer att använda dem på nästa webbsida för att mäta förutsägelse validitet. Nu vill jag presentera de analoga resultaten för en tvåårs glidande medelprognos. Posten för cell C5 ska vara Nu kan du kopiera den här cellformeln ner till de andra cellerna C6 till och med C11. Lägg märke till hur nu endast de två senaste bitarna av historiska data används för varje förutsägelse. Återigen har jag inkluderat quotpast predictionsquot för illustrativa ändamål och för senare användning vid prognosvalidering. Några andra saker som är viktiga att märka. För en m-period som rör genomsnittlig prognos används endast de senaste datavärdena för att göra förutsägelsen. Inget annat är nödvändigt. För en m-period rörande genomsnittlig prognos, när du gör quotpast predictionsquot, notera att den första förutsägelsen sker i period m 1. Båda dessa problem kommer att vara väldigt signifikanta när vi utvecklar vår kod. Utveckla den rörliga genomsnittsfunktionen. Nu behöver vi utveckla koden för den glidande medelprognosen som kan användas mer flexibelt. Koden följer. Observera att inmatningarna är för antalet perioder du vill använda i prognosen och en rad historiska värden. Du kan lagra den i vilken arbetsbok du vill ha. Funktion MovingAverage (Historical, NumberOfPeriods) Som enkel deklarering och initialisering av variabler Dim-objekt som variant Dim-räknare som integer Dim-ackumulering som single Dim HistoricalSize som heltal Initialiserande variabler Counter 1 ackumulering 0 Bestämning av storleken på Historisk matris Historisk storlek Historisk. Count för Counter 1 till NumberOfPeriods Ackumulera lämpligt antal senast tidigare observerade värden ackumulering ackumulering historisk (HistoricalSize - NumberOfPeriods Counter) MovingAverage Accumulation NumberOfPeriods Koden förklaras i klassen. Du vill placera funktionen på kalkylbladet så att resultatet av beräkningen visas där den ska följa följande. Prognosberäkningsexempel A.1 Prognosberäkningsmetoder Tolv metoder för beräkning av prognoser är tillgängliga. De flesta av dessa metoder ger begränsad användarkontroll. Exempelvis kan vikten på senaste historiska data eller datumintervallet för historiska data som används i beräkningarna anges. Följande exempel visar beräkningsförfarandet för var och en av de tillgängliga prognosmetoderna, med en identisk uppsättning historiska data. Följande exempel använder samma försäljningsdata 2004 och 2005 för att producera en 2006-prognos för försäljning. Utöver prognosberäkningen innehåller varje exempel en simulerad 2005-prognos för en tre månaders hållbarhetsperiod (bearbetningsalternativ 19 3) som sedan används för procent av noggrannhet och genomsnittliga absoluta avvikelser (faktiska försäljningar jämfört med simulerad prognos). A.2 Prognos Prestationsutvärderingskriterier Beroende på ditt val av bearbetningsalternativ och de trender och mönster som finns i försäljningsdata, kommer vissa prognosmetoder att fungera bättre än andra för en viss historisk dataset. En prognosmetod som är lämplig för en produkt kanske inte är lämplig för en annan produkt. Det är också osannolikt att en prognostiseringsmetod som ger goda resultat i ett skede av en livscykel för produkterna kommer att förbli lämplig under hela livscykeln. Du kan välja mellan två metoder för att utvärdera nuvarande prestanda för prognosmetoderna. Dessa är genomsnittlig absolut avvikelse (MAD) och procent av noggrannhet (POA). Båda dessa prestationsbedömningsmetoder kräver historiska försäljningsdata för en angiven tidsperiod för användaren. Denna tidsperiod kallas en uthållningsperiod eller perioder som passar bäst (PBF). Uppgifterna under denna period används som utgångspunkt för att rekommendera vilken av prognosmetoderna som ska användas vid nästa prognosprojektion. Denna rekommendation är specifik för varje produkt och kan ändras från en prognosproduktion till nästa. De två prognosutvärderingsmetoderna visas på sidorna efter exempel på de tolv prognosmetoderna. A.3 Metod 1 - Specificerad procentsats under förra året Denna metod multiplicerar försäljningsdata från föregående år med en användardefinierad faktor till exempel 1,10 för en 10 ökning eller 0,97 för en 3 minskning. Erforderlig försäljningshistorik: Ett år för beräkning av prognosen plus användarens specificerade antal tidsperioder för utvärdering av prognosprestanda (behandlingsalternativ 19). A.4.1 Beräkning Beräkningsområde Försäljningshistorik som ska användas vid beräkning av tillväxtfaktor (behandlingsalternativ 2a) 3 i detta exempel. Summa de sista tre månaderna 2005: 114 119 137 370 Summa samma tre månader för föregående år: 123 139 133 395 Den beräknade faktorn 370395 0,9367 Beräkna prognoserna: januari 2005 försäljning 128 0,9367 119,8036 eller cirka 120 februari 2005 försäljning 117 0,9367 109,5939 eller cirka 110 mars 2005 försäljning 115 0,9367 107,7205 eller cirka 108 A.4.2 Simulerad prognosberäkning Summan av tre månaderna 2005 före uthållningsperioden (juli, augusti, september): 129 140 131 400 Summa samma tre månader för föregående år: 141 128 118 387 Den beräknade faktorn 400387 1.033591731 Beräkna simulerad prognos: oktober 2004 försäljning 123 1.033591731 127.13178 november 2004 försäljning 139 1.033591731 143.66925 december 2004 försäljning 133 1.033591731 137.4677 A.4.3 Procent av beräkningsberäkning POA (127.13178 143.66925 137.4677) (114 119 137) 100 408,26873 370 100 110,3429 A.4.4 Genomsnittlig Absolut Avvikelse Beräkning MAD (127,13178 - 114 143,66925 - 119 137,4677-137) 3 (13.13178 24.66925 0.4677) 3 12.75624 A.5 Metod 3 - Förra året till det här året Denna metod kopierar försäljningsdata från föregående år till nästa år. Erforderlig försäljningshistorik: Ett år för beräkning av prognosen plus antal tidsperioder som anges för att utvärdera prognosprestanda (bearbetningsalternativ 19). A.6.1 Beräkning av prognos Antal perioder som ska ingå i medelvärdet (bearbetningsalternativ 4a) 3 i detta exempel För varje månad av prognosen, genomsnitt de föregående tre månaderna data. Januari prognos: 114 119 137 370, 370 3 123 333 eller 123 februari prognos: 119 137 123 379, 379 3 126 333 eller 126 mars prognos: 137 123 126 379, 386 3 128 677 eller 129 A.6.2 Simulerad prognosberäkning Oktober 2005 försäljning 140 131) 3 133 33333 Försäljning i november 2005 (140 131 114) 3 128 33333 Försäljning i december 2005 (131 114 119) 3 121 33333 A.6.3 Procent av beräkningsberäkning POA (133.3333 128.3333 121.3333) (114 119 137) 100 103.513 A.6.4 Medel Absolut Avvikelseberäkning MAD (133.3333 - 114 128.3333 - 119 121.3333 - 137) 3 14.7777 A.7 Metod 5 - Linjär approximation Linjär approximation beräknar en trend baserad på två försäljningshistorikdatapunkter. Dessa två punkter definierar en rak trendlinje som projiceras in i framtiden. Använd denna metod med försiktighet, eftersom långdistansprognoser utnyttjas av små förändringar på bara två datapunkter. Erforderlig försäljningshistorik: Antalet perioder som ska inkluderas i regression (behandlingsalternativ 5a) plus 1 plus antal tidsperioder för utvärdering av prognosprestanda (behandlingsalternativ 19). A.8.1 Beräkning av prognos Antal perioder som ska inkluderas i regression (behandlingsalternativ 6a) 3 i det här exemplet För varje månad av prognosen, lägg till ökningen eller minskningen under de angivna perioderna före hållbarhetsperioden föregående period. Medelvärde av de föregående tre månaderna (114 119 137) 3 123.3333 Sammanfattning av de föregående tre månaderna med hänsyn till (114 1) (119 2) (137 3) 763 Skillnad mellan värdena 763 - 123 3333 (1 2 3) 23 Förhållande 12 22 32) - 2 3 14 - 12 2 Värde1 SkillnadRatio 232 11,5 Värde2 Genomsnitt - värde1 förhållande 123.3333 - 11.5 2 100.3333 Prognos (1 n) värde1 värde2 4 11.5 100.3333 146.333 eller 146 Prognos 5 11.5 100.3333 157.8333 eller 158 Prognos 6 11.5 100.3333 169.3333 eller 169 A.8.2 Simulerad prognosberäkning Oktober 2004 Försäljning: Genomsnittet för de föregående tre månaderna (129 140 131) 3 133 3333 Sammanfattning av de föregående tre månaderna med hänsyn tagen (129 1) (140 2) (131 3) 802 Skillnad mellan värden 802 - 133.3333 (1 2 3) 2 Förhållande (12 22 32) - 2 3 14 - 12 2 Värde1 DifferenceRatio 22 1 Värde2 Genomsnitt - värde1 förhållande 133.3333 - 1 2 131.3333 Prognos (1 n) värde1 värde2 4 1 131.3333 135.3333 November 2004 försäljning Genomsnittet för de tre föregående månaderna (140 131 114) 3 128 3333 Sammanfattning av de föregående tre månaderna med hänsyn till (140 1) (131 2) (114 3) 744 Skillnad mellan värdena 744 - 128 3333 (1 2 3) -25,9999 Värde1 DiffferenceRatio -25.99992 -12.9999 Värde2 Genomsnitt - värde1-förhållande 128.3333 - (-12.9999) 2 154.3333 Prognos 4 -12.9999 154.3333 102.3333 december 2004 Försäljning Genomsnitt av de föregående tre månaderna (131 114 119) 3 121.3333 Sammanfattning av de föregående tre månaderna med hänsyn tagen ( 131 1) (114 2) (119 3) 716 Skillnad mellan värdena 716 - 121.3333 (1 2 3) -11.9999 Värde1 SkillnadRatio -11.99992 -5.9999 Värde2 Genomsnitt - värde1 förhållande 121.3333 - (-5.9999) 2 133.3333 Prognos 4 (-5.9999 ) 133.3333 109.3333 A.8.3 Procent av noggrannhetsberäkning POA (135.33 102.33 109.33) (114 119 137) 100 93.78 A.8.4 Genomsnittlig Absolut Avvikelse Beräkning MAD (135,33 - 114 102,33 - 119 109,33 - 137) 3 21,88 A.9 Metod 7 - Secon d Grad approximation Linjär regression bestämmer värdena för a och b i prognosformeln Y a bX med målet att anpassa en rak linje till försäljningshistorikdata. Andra grader Approximation är liknande. Denna metod bestämmer emellertid värdena för a, b och c i prognosformeln Y a bX cX2 med målet att anpassa en kurva till försäljningshistorikdata. Denna metod kan vara användbar när en produkt är i övergången mellan stadierna i en livscykel. Till exempel, när en ny produkt flyttar från introduktion till tillväxtstadier, kan försäljningsutvecklingen accelereras. På grund av den andra orderperioden kan prognosen snabbt närma sig oändligheten eller släppa till noll (beroende på om koefficienten c är positiv eller negativ). Därför är denna metod endast användbar på kort sikt. Prognosspecifikationer: Formlerna finner a, b och c för att passa en kurva till exakt tre punkter. Du anger n i bearbetningsalternativet 7a, antalet tidsperioder för data som ackumuleras i var och en av de tre punkterna. I detta exempel n 3. Därför kombineras faktiska försäljningsdata för april till juni i första punkten, Q1. Juli till september läggs samman för att skapa Q2 och oktober till december summa till Q3. Kurvan kommer att monteras på de tre värdena Q1, Q2 och Q3. Erforderlig försäljningshistorik: 3 n perioder för beräkning av prognosen plus antal tidsperioder som krävs för att utvärdera prognosprestandan (PBF). Antal perioder som ska inkluderas (behandlingsalternativ 7a) 3 i detta exempel Använd de föregående (3 n) månaderna i tre månaders block: Q1 (april-juni) 125 122 137 384 Q2 (jul-september) 129 140 131 400 Q3 Okt-dec) 114 119 137 370 Nästa steg innefattar att beräkna de tre koefficienterna a, b och c som ska användas i prognosformeln Y a bX cX2 (1) Q1 en bX cX2 (där X1) abc (2) Q2 en bX cX2 (där X2) en 2b 4c (3) Q3 en bX cX2 (där X3) a 3b 9c Lös de tre ekvationerna samtidigt för att hitta b, a och c: Subtrahera ekvation (1) från ekvation (2) och lösa för b (2) - (1) Q2 - Q1 b 3c Ersätt denna ekvation för b till ekvation (3) (3) Q3 a 3 (Q2 - Q1) - 3c c Äntligen ersätt dessa ekvationer för a och b till ekvation (1) Q3 - 3 (Q2 - Q1) (q2 - Q1) - 3c c Q1c (Q3 - Q2) (Q1 - Q2) 2 Den andra graden approximationsmetoden beräknar a, b och c enligt följande: en Q3 - 3 (Q2-Q1) 370-3 (400-384) 322 c (Q3-Q2) (Q1-Q2) 2 (370-400) (384-400) 2 -23 b (Q2-Q1) - 3c (400-384) - (3-23) 85 Y a bX cX2 322 85X (-23) X2 januari till marsprognos (X4): (322 340 - 368) 3 2943 98 per period april till juni prognos (X5): (322 425 - 575) 3 57 333 eller 57 per period juli till september prognos (X6): (322 510 - 828) 3 1,33 eller 1 per period oktober till december (X7) 595 - 11273 -70 A.9.2 Simulerad prognosberäkning Oktober, november och december 2004 Försäljning: Q1 (jan-mar) 360 Q2 (april-juni) 384 Q3 (jul-sep) 400 a 400-3 (384-360) 328 c (400 - 384) (360 - 384) 2 -4 b (384 - 360) - 3 (-4) 36 328 36 4 (-4) 163 136 A.9.3 Procent av beräkningsberäkning POA (136 136 136) (114 119 137) 100 110,27 A.9.4 Genomsnittlig avvikelseberäkning MAD (136 - 114 136 - 119 136 - 137) 3 13,33 A.10 Metod 8 - Flexibel metod Den flexibla metoden (Procent över en månad före) liknar Metod 1, procent över fjolåret. Båda metoderna multiplicerar försäljningsdata från en tidigare tidsperiod av en användardefinierad faktor och sedan projektet som resultat i framtiden. I Procenten över senaste årmetoden är projiceringen baserad på data från samma period föregående år. Den flexibla metoden lägger till förmågan att ange en annan tidsperiod än samma period förra året för att användas som underlag för beräkningarna. Multiplikationsfaktor. Ange till exempel 1,15 i bearbetningsalternativet 8b för att öka tidigare försäljningshistorikdata med 15. Basperiod. Till exempel kommer n 3 att göra att den första prognosen baseras på försäljningsdata i oktober 2005. Minimal försäljningshistorik: Användaren specificerade antal perioder tillbaka till basperioden plus antalet tidsperioder som krävs för att utvärdera prognosprestandan ( PBF). A.10.4 Genomsnittlig Absolut Avvikelse Beräkning MAD (148 - 114 161 - 119 151 - 137) 3 30 A.11 Metod 9 - Vägt Flyttande Medeltal Den Vägda Flyttande Genomsnittsmetoden (WMA) liknar Metod 4, Flyttande medelvärde (MA). Men med det vägda rörliga genomsnittsvärdet kan du tilldela ojämna vikter till historiska data. Metoden beräknar ett vägt genomsnitt av den senaste försäljningshistoriken för att komma fram till en prognos på kort sikt. Nyare data tilldelas vanligtvis en större vikt än äldre data, så det gör WMA mer mottagligt för skift i försäljningsnivån. Men prognosfel och systematiska fel uppstår fortfarande när produktförsäljningshistoriken uppvisar stark trend eller säsongsmönster. Denna metod fungerar bättre för kortvariga prognoser för mogna produkter snarare än för produkter i livscykelns tillväxt eller fördjupning. n antalet försäljningsperioder som ska användas i prognosberäkningen. Ange till exempel n 3 i bearbetningsalternativet 9a för att använda de senaste tre perioderna som utgångspunkt för projiceringen till nästa tidsperiod. Ett stort värde för n (som 12) kräver mer försäljningshistoria. Det resulterar i en stabil prognos, men kommer att vara långsam för att känna igen skift i försäljningsnivån. Å andra sidan kommer ett litet värde för n (som 3) att reagera snabbare på förändringar i försäljningsnivån, men prognosen kan fluktuera så mycket att produktionen inte kan svara på variationerna. Den vikt som tilldelas var och en av de historiska dataperioderna. De tilldelade vikterna måste uppgå till 1,00. Till exempel, när n 3, tilldela vikter på 0,6, 0,3 och 0,1, med den senaste data som tar emot största vikt. Minimikrav på försäljningshistorik: n plus antal tidsperioder som krävs för att utvärdera prognosprestandan (PBF). MAD (133,5 - 114 121,7 - 119 118,7 - 137) 3 13,5 A.12 Metod 10 - Linjär utjämning Denna metod liknar Metod 9, Vägt rörande medelvärde (WMA). I stället för att godtyckligt tilldela vikter till historiska data används en formel för att tilldela vikter som faller linjärt och summan till 1,00. Metoden beräknar sedan ett vägt genomsnitt av den senaste försäljningshistoriken för att komma fram till en prognos på kort sikt. Såsom är sant för alla linjära glidande medelprognostekniker förekommer prognosfel och systematiska fel när produktförsäljningshistoriken uppvisar stark trend eller säsongsmönster. Denna metod fungerar bättre för kortvariga prognoser för mogna produkter snarare än för produkter i livscykelns tillväxt eller fördjupning. n antalet försäljningsperioder som ska användas i prognosberäkningen. Detta anges i bearbetningsalternativet 10a. Ange till exempel n 3 i bearbetningsalternativet 10b för att använda de senaste tre perioderna som utgångspunkt för projiceringen till nästa tidsperiod. Systemet kommer automatiskt att tilldela vikterna till historiska data som minskar linjärt och summerar till 1,00. Till exempel, när n 3, kommer systemet att tilldela vikter på 0,5, 0,3333 och 0,1, med den senaste data som tar emot största vikt. Minimikrav på försäljningshistorik: n plus antal tidsperioder som krävs för att utvärdera prognosprestandan (PBF). A.12.1 Beräkningsberäkning Antal perioder som ska inkluderas i utjämningsgenomsnitt (behandlingsalternativ 10a) 3 i detta exempel Förhållande för en period före 3 (n2 n) 2 3 (32 3) 2 36 0,5 Förhållande för två perioder före 2 (n2 n ) 2 2 (32 3) 2 26 0,3333 .. Förhållande för tre perioder före 1 (n2 n) 2 1 (32 3) 2 16 0,166 .. Januari prognos: 137 0,5 119 13 114 16 127,16 eller 127 februari prognos: 127 0,5 137 13 119 16 129 Marsprognos: 129 0,5 127 13 137 16 129 666 eller 130 A.12.2 Simulerad prognosberäkning Oktober 2004 Försäljning 129 16 140 26 131 36 133,6666 Försäljning november 2004 140 16 131 26 114 36 124 december 2004 Försäljning 131 16 114 26 119 36 119.3333 A.12.3 Procent av beräkningsberäkning POA (133.6666 124 119.3333) (114 119 137) 100 101.891 A.12.4 Genomsnittlig Absolut Avvikelse Beräkning MAD (133.6666 - 114 124 - 119 119.3333 - 137) 3 14.1111 A.13 Metod 11 - Exponentiell utjämning Denna metod liknar metod 10, linjär utjämning. Vid linjär utjämning tilldelar systemet vikter till historiska data som avtar linjärt. Vid exponentiell utjämning tilldelar systemet vägar som exponentiellt sönderfall. Exponential utjämning prognos ekvation är: Prognos a (Tidigare verklig försäljning) (1-a) Föregående Prognos Prognosen är ett vägt genomsnitt av den faktiska försäljningen från föregående period och prognosen från föregående period. a är vikten på den faktiska försäljningen för föregående period. (1 - a) är vikten av prognosen för föregående period. Giltiga värden för ett intervall från 0 till 1, och vanligtvis faller mellan 0,1 och 0,4. Summan av vikterna är 1,00. a (1 - a) 1 Du bör tilldela ett värde för utjämningskonstanten, a. Om du inte tilldelar värden för utjämningskonstanten, beräknar systemet ett antaget värde baserat på antalet försäljningsperioder som anges i bearbetningsalternativet 11a. en utjämningskonstanten som används vid beräkning av det jämnformade genomsnittet för den allmänna nivån eller storleken på försäljningen. Giltiga värden för ett intervall från 0 till 1. n sortimentet av försäljningshistorikdata som ingår i beräkningarna. Ett år med försäljningshistorikdata är i allmänhet tillräcklig för att uppskatta den allmänna försäljningsnivån. För detta exempel valdes ett litet värde för n (n 3) för att minska de manuella beräkningar som krävs för att verifiera resultaten. Exponentiell utjämning kan generera en prognos baserad på så lite som en historisk datapunkt. Minimikrav på försäljningshistorik: n plus antal tidsperioder som krävs för att utvärdera prognosprestandan (PBF). A.13.1 Prognosberäkning Antal perioder som ska inkluderas i utjämningsgenomsnitt (bearbetningsalternativ 11a) 3 och alfaktor (bearbetningsalternativ 11b) tom i detta exempel en faktor för äldsta försäljningsdata 2 (11) eller 1 när alfabet specificeras en faktor för den 2: e äldsta försäljningsdata 2 (12), eller alf när alpha anges en faktor för den 3: e äldsta försäljningsdata 2 (13), eller alf när alpha anges en faktor för den senaste försäljningsdata 2 (1n) , eller alfa när alpha är specificerat november sm. Avg. a (oktober faktiskt) (1 - a) oktober sm. Avg. 1 114 0 0 114 december Sm. Avg. a (november faktiskt) (1 - a) november sm. Avg. 23 119 13 114 117.3333 januari prognos a (december faktiskt) (1 - a) december sm. Avg. 24 137 24 117.3333 127.16665 eller 127 februari Prognos januari prognos 127 mars prognos januari prognos 127 A.13.2 simulerad prognosberäkning juli 2004 sm. Avg. 22 129 129 augusti Sm. Avg. 23 140 13 129 136.3333 September Sm. Avg. 24 131 24 136 3333 133,6666 oktober 2004 försäljning sep sm. Avg. 133.6666 augusti, 2004 Sm. Avg. 22 140 140 september Sm. Avg. 23 131 13 140 134 oktober Sm. Avg. 24 114 24 134 124 november 2004 försäljning sep sm. Avg. 124 september 2004 Sm. Avg. 22 131 131 oktober Sm. Avg. 23 114 13 131 119,6666 November Sm. Avg. 24 119 24 119,6666 119,3333 december 2004 försäljning sep sm. Avg. 119.3333 A.13.3 Procent av noggrannhetsberäkning POA (133.6666 124 119.3333) (114 119 137) 100 101.891 A.13.4 Genomsnittlig Absolut Avvikelse Beräkning MAD (133.6666 - 114 124 - 119 119.3333 - 137) 3 14.1111 A.14 Metod 12 - Exponentiell utjämning med trend och säsonglighet Denna metod liknar metod 11, exponentiell utjämning genom att ett jämnt medelvärde beräknas. Metod 12 innehåller emellertid också en term i prognosekvationen för att beräkna en jämn trend. Prognosen består av en jämn genomsnittlig justering för en linjär trend. När det anges i bearbetningsalternativet justeras prognosen också för säsongsmässigt. en utjämningskonstanten som används vid beräkning av det jämnformade genomsnittet för den allmänna nivån eller storleken på försäljningen. Giltiga värden för alfabetik från 0 till 1. b utjämningskonstanten som används vid beräkning av det jämnde genomsnittet för prognosens trendkomponent. Giltiga värden för betavärde från 0 till 1. Om ett säsongsindex används för prognos a och b är oberoende av varandra. De behöver inte lägga till 1,0. Minimikrav på försäljningshistoria: två år plus antal tidsperioder som krävs för att utvärdera prognosprestandan (PBF). Metod 12 använder två exponentiella utjämningsekvationer och ett enkelt medelvärde för att beräkna ett jämnt medelvärde, en jämn trend och en enkel genomsnittlig säsongsfaktor. A.14.1 Prognosberäkning A) Ett exponentiellt jämnt MAD (122.81 - 114 133.14 - 119 135.33 - 137) 3 8.2 A.15 Utvärdering av prognoserna Du kan välja prognosmetoder för att generera så många som tolv prognoser för varje produkt. Varje prognosmetod kommer sannolikt att skapa en något annorlunda projicering. När tusentals produkter prognostiseras är det opraktiskt att göra ett subjektivt beslut om vilka av prognoserna som ska användas i dina planer för var och en av produkterna. Systemet utvärderar automatiskt prestanda för var och en av de prognosmetoder du väljer och för varje prognos för produkterna. Du kan välja mellan två prestandakriterier, Mean Absolute Deviation (MAD) och Procent Accuracy (POA). MAD är ett mått på prognosfel. POA är ett mått på prognosförskjutning. Båda dessa prestandautvärderingstekniker kräver faktiska försäljningshistorikdata för en användarens specificerade tidsperiod. Den här historiska perioden kallas en hållbarhetstid eller perioder som passar bäst (PBF). För att mäta resultatet av en prognostiseringsmetod, använd prognosformlerna för att simulera en prognos för historisk uthållighetsperiod. Det kommer vanligtvis att finnas skillnader mellan faktiska försäljningsdata och den simulerade prognosen för hållbarhetsperioden. När flera prognosmetoder väljs utförs samma process för varje metod. Flera prognoser beräknas för hållbarhetsperioden och jämförs med den kända försäljningshistoriken för samma tidsperiod. Prognosmetoden som ger den bästa matchningen (bästa passformen) mellan prognosen och den faktiska försäljningen under hållbarhetsperioden rekommenderas för användning i dina planer. Denna rekommendation är specifik för varje produkt och kan ändras från en prognosproduktion till nästa. A.16 Mean Absolute Deviation (MAD) MAD är medelvärdet (eller genomsnittet) av de absoluta värdena (eller storleken) av avvikelserna (eller fel) mellan aktuell och prognosdata. MAD är ett mått på den genomsnittliga storleksgraden av fel som kan förväntas, med en prognosmetod och datahistorik. Eftersom absoluta värden används i beräkningen avbryter inte positiva fel negativa fel. När man jämför flera prognosmetoder har den med den minsta MAD visat sig vara den mest tillförlitliga för den produkten under den perioden som hålls kvar. När prognosen är opartisk och fel normalt distribueras finns det ett enkelt matematiskt förhållande mellan MAD och två andra gemensamma fördelningsförhållanden, standardavvikelse och medelkvadratfel: A.16.1 Procent av noggrannhet (POA) Procent av noggrannhet (POA) ett mått på prognosförskjutning. När prognoserna är konsekventa för höga ackumuleras lager och lagerkostnader ökar. När prognoserna är konsekvent två låga förbrukas lager och kundservice minskar. En prognos som är 10 enheter för låg, då 8 enheter för höga, då 2 enheter för höga, skulle vara en objektiv prognos. Det positiva felet på 10 avbryts med negativa fel på 8 och 2. Fel Aktuell - Prognos När en produkt kan lagras i lager, och när prognosen är opartisk, kan en liten mängd säkerhetslager användas för att buffra felet. I den här situationen är det inte så viktigt att eliminera prognosfel eftersom det är att skapa objektiva prognoser. Men inom serviceindustrin skulle ovanstående situation ses som tre fel. Tjänsten skulle vara underbemannad under den första perioden, sedan överbemannade för de kommande två perioderna. I tjänster är storleken av prognosfel vanligtvis viktigare än vad som är prognostiserad bias. Sammanfattningen över hållbarhetsperioden tillåter positiva fel att avbryta negativa fel. När den totala faktiska försäljningen överstiger den totala prognostiserade försäljningen är förhållandet större än 100. Det är naturligtvis omöjligt att vara mer än 100 exakt. När en prognos är opartisk blir POA-förhållandet 100. Därför är det mer önskvärt att vara 95 exakt än att vara 110 exakt. POA-kriterierna väljer prognosmetoden som har ett POA-förhållande närmast 100. Skripting på denna sida förstärker innehållsnavigering men ändrar inte innehållet på något sätt.3 Förstå prognosnivåer och metoder Du kan generera både detaljprognoser (enstaka objekt) och sammanfattningar (produktlinje) prognoser som speglar produktbehovsmönster. Systemet analyserar tidigare försäljning för att beräkna prognoser genom att använda 12 prognosmetoder. Prognoserna innehåller detaljerad information på objektnivå och högre nivåinformation om en filial eller företaget som helhet. 3.1 Prognos för prestationsutvärderingskriterier Beroende på valet av bearbetningsalternativ och trender och mönster i försäljningsdata, utförs vissa prognosmetoder bättre än andra för en given historisk dataset. En prognosmetod som är lämplig för en produkt kanske inte är lämplig för en annan produkt. Det kan hända att en prognosmetod som ger goda resultat i ett skede av en produkts livscykel är lämplig under hela livscykeln. Du kan välja mellan två metoder för att utvärdera nuvarande prestanda för prognosmetoderna: Procent av noggrannhet (POA). Medel absolut avvikelse (MAD). Båda dessa prestationsbedömningsmetoder kräver historiska försäljningsdata under en period som du anger. Denna period kallas en uthållningsperiod eller period med bästa passform. Uppgifterna under denna period används som utgångspunkt för att rekommendera vilken prognosmetod som ska användas vid nästa prognosprojektion. Denna rekommendation är specifik för varje produkt och kan ändras från en prognosproduktion till nästa. 3.1.1 Bästa passform Systemet rekommenderar den bästa anpassningsprognosen genom att använda de valda prognosmetoderna till tidigare försäljningsorderhistorik och jämföra prognosimuleringen till den aktuella historiken. När du genererar en bästa anpassningsprognos jämförs systemet faktiska försäljningsorderhistorier med prognoser för en viss tidsperiod och beräknar hur exakt varje olika prognosmetod förutspådde försäljningen. Då rekommenderar systemet att den mest exakta prognosen är den bästa passformen. Denna grafik illustrerar bästa passformsprognoser: Figur 3-1 Bästa passformsprognos Systemet använder denna stegsekvens för att bestämma den bästa passformen: Använd varje specificerad metod för att simulera en prognos för hållbarhetsperioden. Jämför den faktiska försäljningen till de simulerade prognoserna för hållbarhetsperioden. Beräkna POA eller MAD för att bestämma vilken prognosmetod som ligger närmast den tidigare faktiska försäljningen. Systemet använder antingen POA eller MAD, baserat på de behandlingsalternativ som du väljer. Rekommendera en lämplig prognos för POA som är närmast 100 procent (över eller under) eller MAD som är närmast noll. 3.2 Prognosmetoder JD Edwards EnterpriseOne Forecast Management använder 12 metoder för kvantitativ prognos och anger vilken metod som passar bäst för prognosläget. Detta avsnitt diskuterar: Metod 1: Procent under förra året. Metod 2: Beräknad procentsats under förra året. Metod 3: Förra året till det här året. Metod 4: Flyttande medelvärde. Metod 5: Linjär approximation. Metod 6: Minsta kvadratregression. Metod 7: Tillnärmning av andra graden. Metod 8: Flexibel metod. Metod 9: Viktat rörande medelvärde. Metod 10: Linjär utjämning. Metod 11: Exponentiell utjämning. Metod 12: Exponentiell utjämning med trend och säsonglighet. Ange den metod som du vill använda i behandlingsalternativen för prognosgenereringsprogrammet (R34650). De flesta av dessa metoder ger begränsad kontroll. Exempelvis kan vikten på senaste historiska data eller datumintervallet för historiska data som används i beräkningarna specificeras av dig. Exemplen i guiden anger beräkningsförfarandet för var och en av de tillgängliga prognosmetoderna, med en identisk uppsättning historiska data. Metodsexemplen i guiden använder en del eller alla dessa datasatser, vilket är historiska data från de senaste två åren. Prognosprojektionen går in i nästa år. Försäljningshistorikdata är stabila med små säsongsökningar i juli och december. Detta mönster är karakteristiskt för en mogen produkt som kan närma sig föryngring. 3.2.1 Metod 1: Procent under förra året Denna metod använder Formuläret Procent Över fjolårets formel för att multiplicera varje prognosperiod med angiven procentuell ökning eller minskning. För att kunna förutse efterfrågan kräver denna metod antalet perioder för bästa passform plus ett års försäljningshistoria. Denna metod är användbar för att prognostisera efterfrågan på säsongsvaror med tillväxt eller minskning. 3.2.1.1 Exempel: Metod 1: Procent under fjolåret Procenten över fjolårets formel multiplicerar försäljningsdata från föregående år med en faktor du anger och sedan projekt som resulterar under nästa år. Denna metod kan vara användbar vid budgetering för att simulera påverkan av en viss tillväxt eller när försäljningshistoriken har en betydande säsongskomponent. Prognosspecifikationer: Multiplikationsfaktor. Ange till exempel 110 i bearbetningsalternativet för att öka de tidigare årens försäljningshistorikdata med 10 procent. Erforderlig försäljningshistorik: Ett år för beräkning av prognosen plus antal tidsperioder som krävs för att utvärdera prognosprestandan (perioder med bästa passform) som du anger. Denna tabell är historia som används i prognosberäkningen: Februari-prognosen motsvarar 117 gånger 1,1 128,7 avrundad till 129. Marsprognosen motsvarar 115 gånger 1,1 126,5 avrundad till 127. 3.2.2 Metod 2: Beräknad procentsats under förra året Denna metod använder beräknad procentsats över Förra året formel för att jämföra den tidigare försäljningen av specificerade perioder till försäljning från samma perioder föregående år. Systemet bestämmer en procentuell ökning eller minskning, och multiplicerar sedan varje period med procentandelen för att bestämma prognosen. För att kunna förutse efterfrågan kräver denna metod antalet perioder med orderorderhistorik plus ett års försäljningshistorik. Denna metod är användbar för att förutspå kortfristig efterfrågan på säsongsvaror med tillväxt eller nedgång. 3.2.2.1 Exempel: Metod 2: Beräknad procentsats under förra året Beräknad procentsats Över fjolårets formel multiplicerar försäljningsdata från föregående år med en faktor som beräknas av systemet och sedan projekterar det resultatet för nästa år. Den här metoden kan vara användbar för att påvisa inverkan på att förlänga den senaste tillväxttakten för en produkt till nästa år samtidigt som ett säsongsmönster som finns i försäljningshistoriken bevaras. Prognosspecifikationer: Omsättning av försäljningshistoria som ska användas vid beräkning av tillväxten. Till exempel, specificera n är lika med 4 i bearbetningsalternativet för att jämföra försäljningshistorik för de senaste fyra perioderna till samma fyra perioder föregående år. Använd det beräknade förhållandet för att göra projiceringen för nästa år. Erforderlig försäljningshistoria: Ett år för beräkning av prognosen plus antal tidsperioder som krävs för att utvärdera prognosprestandan (perioder med bästa passform). Denna tabell är historia som används i prognosberäkningen, givet n 4: Februari-prognosen motsvarar 117 gånger 0,9766 114,26 avrundad till 114. Marsprognosen motsvarar 115 gånger 0,9766 112,31 avrundad till 112. 3.2.3 Metod 3: Förra året till i år Denna metod använder Förra årets försäljning för nästa års prognos. För att prognostisera efterfrågan kräver denna metod det antal perioder som passar bäst, plus ett års orderorderhistorik. Denna metod är användbar för att förutse efterfrågan på mogna produkter med efterfrågan på efterfrågan eller säsongens efterfrågan utan en trend. 3.2.3.1 Exempel: Metod 3: Förra året till det här året Förra året till årets formel kopieras försäljningsdata från föregående år till nästa år. Denna metod kan vara användbar vid budgetering för att simulera försäljningen på nuvarande nivå. Produkten är mogen och har ingen trend på lång sikt, men det kan finnas ett betydande säsongsmönster. Prognosspecifikationer: Ingen. Erforderlig försäljningshistoria: Ett år för beräkning av prognosen plus antal tidsperioder som krävs för att utvärdera prognosprestandan (perioder med bästa passform). Denna tabell är historia som används i prognosberäkningen: Januari-prognosen motsvarar januari i fjol med ett prognosvärde på 128. Februari-prognosen motsvarar februari förra året med ett prognosvärde på 117. Marsprognosen är samma som i mars i fjol med ett prognostiskt värde av 115. 3.2.4 Metod 4: Flyttande medelvärde Med denna metod används den rörliga genomsnittsformeln för att medge det angivna antalet perioder för att projicera nästa period. Du bör räkna om det ofta (månadsvis eller åtminstone kvartalsvis) för att återspegla förändrad efterfråganivå. För att prognostisera efterfrågan kräver denna metod det antal perioder som passar bäst, plus antalet perioder med orderorderhistorik. Denna metod är användbar för att förutse efterfrågan på mogna produkter utan en trend. 3.2.4.1 Exempel: Metod 4: Flytta genomsnittligt rörligt medelvärde (MA) är en populär metod för att medelvärda resultaten av den senaste försäljningshistoriken för att bestämma en prognos på kort sikt. MA prognosmetoden ligger bakom trenderna. Prognosfel och systematiska fel uppstår när produktförsäljningshistoriken uppvisar stark trend eller säsongsmönster. Denna metod fungerar bättre för kortvariga prognoser för mogna produkter än för produkter som ligger i livscykelns tillväxt eller fördjupning. Prognosspecifikationer: n är det antal försäljningsperioder som ska användas i prognosberäkningen. Ange till exempel n 4 i bearbetningsalternativet för att använda de senaste fyra perioderna som utgångspunkt för projiceringen till nästa tidsperiod. Ett stort värde för n (som 12) kräver mer försäljningshistoria. Det resulterar i en stabil prognos, men är långsamt att känna igen skift i försäljningsnivån. Omvänt är ett litet värde för n (som 3) snabbare att svara på förändringar i försäljningsnivån, men prognosen kan fluktuera så mycket att produktionen inte kan svara på variationerna. Erforderlig försäljningshistorik: n plus antal tidsperioder som krävs för att utvärdera prognosprestandan (perioder med bästa passform). Denna tabell är historia som används i prognosberäkningen: Februari-prognosen motsvarar (114 119 137 125) 4 123,75 avrundad till 124. Marsprognosen är lika med (119 137 125 124) 4 126.25 avrundad till 126. 3.2.5 Metod 5: Linjär approximation Denna metod använder den linjära approximationsformeln för att beräkna en trend från antalet perioder av orderorderhistorik och att projicera denna trend till prognosen. Du bör omräkna trenden månadsvis för att upptäcka förändringar i trender. Denna metod kräver antalet perioder med bäst passform plus antal specificerade perioder av orderorderhistorik. Denna metod är användbar för att prognostisera efterfrågan på nya produkter eller produkter med konsekventa positiva eller negativa trender som inte beror på säsongsvariationer. 3.2.5.1 Exempel: Metod 5: Linjär approximation Linjär approximation beräknar en trend som baseras på två försäljningshistoriska datapunkter. Dessa två punkter definierar en rak trendlinje som projiceras in i framtiden. Använd denna metod med försiktighet, eftersom långdistansprognoser utnyttjas av små förändringar på bara två datapunkter. Prognosspecifikationer: n motsvarar datapunktet i försäljningshistorik som jämförs med den senaste datapunkten för att identifiera en trend. Ange till exempel n 4 för att använda skillnaden mellan december (senaste uppgifterna) och augusti (fyra perioder före december) som grund för beräkning av trenden. Minsta obligatoriska försäljningshistorik: n plus 1 plus antal tidsperioder som krävs för att utvärdera prognosprestandan (perioder med bästa passform). Denna tabell är historia som används i prognosberäkningen: Januariprognos december förra året 1 (Trend), vilket är 137 (1 gånger 2) 139. Februari prognos december förra året 1 (Trend), vilket är 137 (2 gånger 2) 141. Marsprognos december förra året 1 (Trend), som är lika med 137 (3 gånger 2) 143. 3.2.6 Metod 6: Minsta kvadreregression Metoden för minsta kvadratregression (LSR) härleder en ekvation som beskriver ett raklinjeläge mellan historiska försäljningsdata och tidens gång. LSR passar en linje till det valda datamängden så att summan av kvadraterna för skillnaderna mellan de faktiska försäljningsdatapunkterna och regressionslinjen minimeras. Prognosen är en projicering av denna raka linje i framtiden. Denna metod kräver försäljningsdatahistorik för den period som representeras av antalet perioder som passar bäst och det angivna antalet historiska datoperioder. Minimikravet är två historiska datapunkter. Denna metod är användbar för att förutse efterfrågan när en linjär trend är i data. 3.2.6.1 Exempel: Metod 6: Minsta kvadratregression Linjär regression eller LAST-kvadratregression (LRR) är den mest populära metoden för att identifiera en linjär trend i historiska försäljningsdata. Metoden beräknar värdena för a och b som ska användas i formeln: Denna ekvation beskriver en rak linje, där Y representerar försäljning och X representerar tid. Linjär regression är långsam att känna igen vändpunkter och stegfunktionsskift i efterfrågan. Linjär regression passar en rak linje till data, även om data är säsongsbetonad eller bättre beskrivs av en kurva. När försäljningshistorikdata följer en kurva eller har ett starkt säsongsmönster uppträder prognosfel och systematiska fel. Prognosspecifikationer: n är lika med försäljningshistorikperioderna som kommer att användas vid beräkning av värdena för a och b. Ange till exempel n 4 för att använda historiken från september till december som grund för beräkningarna. När data är tillgänglig skulle en större n (såsom n 24) normalt användas. LSR definierar en rad för så få som två datapunkter. För detta exempel valdes ett litet värde för n (n 4) för att minska de manuella beräkningarna som krävs för att verifiera resultaten. Minimikrav på försäljningshistorik: n perioder plus antal tidsperioder som krävs för att utvärdera prognosprestandan (perioder med bästa passform). Denna tabell är historia som används i prognosberäkningen: Marsprognosen motsvarar 119,5 (7 gånger 2,3) 135,6 avrundad till 136. 3.2.7 Metod 7: Andra grader Approximation För att projicera prognosen använder denna metod andra grader approximationsformeln för att plotta en kurva Det är baserat på antalet försäljningsperioder. Denna metod kräver antalet perioder som passar bäst, plus antalet perioder av orderorderhistorikstider tre. Denna metod är inte användbar för att prognostisera efterfrågan på en långsiktig period. 3.2.7.1 Exempel: Metod 7: Andra grader approximation Linjär regression bestämmer värdena för a och b i prognosformeln Y a b X med målet att anpassa en rak linje till försäljningshistorikdata. Andra grader Approximation är liknande, men den här metoden bestämmer värdena för a, b och c i den här prognosformeln: Y a b X c X 2 Syftet med denna metod är att passa en kurva till försäljningshistorikdata. Denna metod är användbar när en produkt är i övergången mellan livscykelstadier. Till exempel, när en ny produkt flyttar från introduktion till tillväxtstadier, kan försäljningsutvecklingen accelereras. På grund av den andra orderperioden kan prognosen snabbt närma sig oändligheten eller släppa till noll (beroende på om koefficienten c är positiv eller negativ). Denna metod är endast användbar på kort sikt. Prognosspecifikationer: Formeln hitta a, b och c för att passa en kurva till exakt tre punkter. Du anger n, antalet tidsperioder för data som ackumuleras i var och en av de tre punkterna. I detta exempel, n 3. Faktiska försäljningsdata för april till juni kombineras till första punkten, Q1. Juli till september läggs samman för att skapa Q2 och oktober till december summa till Q3. Kurvan är monterad på de tre värdena Q1, Q2 och Q3. Erforderlig försäljningshistorik: 3 gånger n perioder för beräkning av prognosen plus antal tidsperioder som krävs för att utvärdera prognosens prestanda (perioder med bästa passform). Denna tabell är historia som används i prognosberäkningen: Q0 (Jan) (Feb) (Mar) Q1 (Apr) (Maj) (Jun), vilket motsvarar 125 122 137 384 Q2 (Jul) (Aug) (Sep) vilket är lika med 140 129 131 400 Q3 (okt) (nov) (dec) vilket motsvarar 114 119 137 370 Nästa steg innebär att de tre koefficienterna a, b och c används för att användas i prognosformeln Y ab X c X 2. Q1, Q2 och Q3 presenteras på grafiken, där tiden är planerad på den horisontella axeln. Q1 representerar total historisk försäljning för april, maj och juni och är planerad till X 1 Q2 motsvarar juli till september Q3 motsvarar oktober till december och Q4 representerar januari till mars. Figur 3-2 Plottning Q1, Q2, Q3 och Q4 för approximering av andra grader Tre ekvationer beskriver de tre punkterna på diagrammet: (1) Q1, Q2, Q3 och Q4 för andra graders approximation: Figur 3-2 en bX cX 2 där X 1 (Q1 abc) (2) Q2 en bX cX2 där X2 (Q2 a2b4c) (3) Q3 en bX cX2 där X3 (Q3 a 3b 9c) Lös de tre ekvationerna samtidigt för att hitta b, a och c: Subtrahera ekvation 1 (1) från ekvation 2 (2) och lösa för b: (2) ndash (1) Q2 ndash Q1 b 3c b (Q2 ndash Q1) ndash 3c Ersätt denna ekvation för b till ekvation (3): (3) Q3 a 3 (Q2 ndash Q1) ndash 3c 9c a Q3 ndash 3 (Q2 ndash Q1) Äntligen ersätt dessa ekvationer för a och b till ekvation (1): (1) Q3 ndash 3 (Q2 ndash Q1) (Q2 ndash Q1) ndash 3c c Q1c (Q3 ndash Q2) (Q1 ndash Q2) 2 Den andra graden approximationsmetoden beräknar a, b och c enligt följande: en Q3 ndash 3 (Q2 ndash Q1 ) 370 ndash 3 (400 ndash 384) 370 ndash 3 (16) 322 b (Q2 ndash Q1) ndash3c (400 nda sh 384) ndash (3 gånger ndash23) 16 69 85 c (Q3 ndash Q2) (Q1 ndash Q2) 2 (370 ndash 400) (384 ndash 400) 2 ndash23 Detta är en beräkning av approximationsprognos för andra graden: Y a bX cX 2 322 85X (ndash23) (X 2) När X 4, Q4 322 340 ndash 368 294. Prognosen motsvarar 294 3 98 per period. När X 5, Q5 322 425 ndash 575 172. Prognosen är 172 3 58,33 avrundad till 57 per period. När X 6, Q6 322 510 ndash 828 4. Prognosen är lika med 4 3 1,33 avrundad till 1 per period. Detta är prognosen för nästa år, förra året till det här året: 3.2.8 Metod 8: Flexibel metod Med den här metoden kan du välja det passande antal perioder av orderorderhistorik som börjar n månader före prognosens startdatum och till tillämpa en procentuell ökning eller minskning multiplikationsfaktor för att ändra prognosen. Denna metod liknar Metod 1, Procent över förra året, förutom att du kan ange antalet perioder som du använder som bas. Beroende på vad du väljer som n kräver denna metod perioder som passar bäst och antalet perioder av försäljningsdata som anges. Denna metod är användbar för att förutse efterfrågan på en planerad trend. 3.2.8.1 Exempel: Metod 8: Flexibel metod Den flexibla metoden (Procent över n månader före) liknar Metod 1, Procent över förra året. Båda metoderna multiplicerar försäljningsdata från en tidigare tidsperiod med en faktor som specificeras av dig och sedan projekterar det resultatet i framtiden. I Procenten över senaste årmetoden är projiceringen baserad på data från samma period föregående år. Du kan också använda den flexibla metoden för att ange en tidsperiod, annan än samma period det senaste året, för att använda som underlag för beräkningarna. Multiplikationsfaktor. Ange till exempel 110 i bearbetningsalternativet för att öka tidigare försäljningshistorikdata med 10 procent. Basperiod Till exempel medför n 4 att den första prognosen baseras på försäljningsdata i september förra året. Minimikrav på försäljningshistorik: Antalet perioder tillbaka till basperioden plus antal tidsperioder som krävs för att utvärdera prognosprestandan (perioder med bästa passform). Den här tabellen är historia som används i prognosberäkningen: 3.2.9 Metod 9: Viktad Flyttande Medeltal Den viktade Flytta genomsnittliga formeln liknar Metod 4, Flyttande medelformel, eftersom den genomsnittlig försäljningshistorik för föregående månader för att projicera nästa månads försäljningshistorik. Med denna formel kan du dock tilldela vikter för varje tidigare period. Denna metod kräver antalet viktiga perioder som valts plus antal perioder som passar bäst i data. På samma sätt som rörande medelvärde ligger denna metod bakom efterfrågan trender, så den här metoden rekommenderas inte för produkter med starka trender eller säsongsmässiga egenskaper. Denna metod är användbar för att prognostisera efterfrågan på mogna produkter med en efterfrågan som är relativt nivå. 3.2.9.1 Exempel: Metod 9: Vägt rörlig medelvärde Den viktade rörliga genomsnittsmetoden (WMA) liknar Metod 4, Moving Average (MA). Du kan dock tilldela ojämna vikter till historiska data när du använder WMA. Metoden beräknar ett vägt genomsnitt av den senaste försäljningshistoriken för att komma fram till en prognos på kort sikt. Nyare data tilldelas vanligtvis en större vikt än äldre data, så WMA är mer mottaglig för skift i försäljningsnivån. Emellertid uppstår prognoser och systematiska fel när produktförsäljningshistoriken uppvisar starka trender eller säsongsmönster. Denna metod fungerar bättre för korta prognoser för mogna produkter än för produkter i livscykelns tillväxt eller fördjupning. Antalet försäljningshistorikperioder (n) som ska användas i prognosberäkningen. Ange till exempel n 4 i bearbetningsalternativet för att använda de senaste fyra perioderna som utgångspunkt för projiceringen till nästa tidsperiod. Ett stort värde för n (som 12) kräver mer försäljningshistoria. Ett sådant värde ger en stabil prognos, men det är långsamt att känna igen skift i försäljningsnivån. Omvänt svarar ett litet värde för n (som 3) snabbare till förändringar i försäljningsnivån, men prognosen kan fluktuera så mycket att produktionen inte kan svara på variationerna. Det totala antalet perioder för behandlingsalternativet rdquo14 - perioder till includerdquo bör inte överstiga 12 månader. Den vikt som tilldelas var och en av de historiska dataperioderna. De tilldelade vikterna måste uppgå till 1,00. Till exempel när n 4 tilldelar vikter av 0,50, 0,25, 0,15 och 0,10 med de senaste data som tar emot största vikt. Minimikrav på försäljningshistorik: n plus antal tidsperioder som krävs för att utvärdera prognosens prestanda (perioder med bästa passform). Denna tabell är historia som används i prognosberäkningen: Januari-prognosen motsvarar (131 gånger 0,10) (114 gånger 0,15) (119 gånger 0,25) (137 gånger 0,50) (0,10 0,15 0,25 0,50) 128,45 avrundad till 128. Februari-prognosen motsvarar (114 gånger 0,10) (119 gånger 0,15) (128 gånger 0,25) (128 gånger 0,25) (128 gånger 0,50) 1 128,45 avrundad till 128. 3.2.10 Metod 10: Linjär utjämning Denna metod beräknar ett vägt genomsnitt av tidigare försäljningsdata. I beräkningen använder denna metod antalet perioder av orderorderhistorik (från 1 till 12) som anges i behandlingsalternativet. Systemet använder en matematisk progression för att väga data i intervallet från den första (minsta vikten) till den slutliga (mest vikt). Då projicerar systemet denna information till varje period i prognosen. Denna metod kräver att månaderna bäst passar plus försäljningsorderhistoriken för antalet perioder som anges i bearbetningsalternativet. 3.2.10.1 Exempel: Metod 10: Linjär utjämning Denna metod liknar Metod 9, WMA. I stället för att godtyckligt tilldela vikter till historiska data används en formel för att tilldela vikter som faller linjärt och summan till 1,00. Metoden beräknar sedan ett vägt genomsnitt av den senaste försäljningshistoriken för att komma fram till en prognos på kort sikt. Liksom alla linjära glidande medelprognostekniker förekommer prognosfel och systematiska fel när produktförsäljningshistoriken uppvisar stark trend eller säsongsmönster. Denna metod fungerar bättre för korta prognoser för mogna produkter än för produkter i livscykelns tillväxt eller fördjupning. n motsvarar antalet försäljningsperioder som ska användas i prognosberäkningen. Till exempel, specificera n är lika med 4 i bearbetningsalternativet för att använda de senaste fyra perioderna som grund för projiceringen till nästa tidsperiod. Systemet tilldelar automatiskt vikterna till historiska data som avtar linjärt och summerar till 1,00. Till exempel, när n är lika med 4, tilldelar systemet vikter av 0,4, 0,3, 0,2 och 0,1, med den senaste data som tar emot största vikt. Minimikrav på försäljningshistorik: n plus antal tidsperioder som krävs för att utvärdera prognosens prestanda (perioder med bästa passform). Denna tabell är historia som används i prognosberäkningen: 3.2.11 Metod 11: Exponentiell utjämning Denna metod beräknar ett jämnt medelvärde som blir en uppskattning som representerar den allmänna försäljningsnivån över de valda historiska datoperioderna. Denna metod kräver försäljningsdatahistorik för den tidsperiod som representeras av antalet perioder som passar bäst och antalet historiska datoperioder som anges. Minimikravet är två historiska datoperioder. Denna metod är användbar för att prognostisera efterfrågan när ingen linjär trend är i data. 3.2.11.1 Exempel: Metod 11: Exponentiell utjämning Denna metod liknar metod 10, linjär utjämning. Vid linjär utjämning tilldelar systemet vikter som avviker linjärt till historiska data. Vid exponentiell utjämning tilldelar systemet vikter som exponentiellt sönderfall. Ekvationen för exponentiell utjämningsprognos är: Prognos alfa (Tidigare verklig försäljning) (1 ndashalpha) (Tidigare prognos) Prognosen är ett vägt genomsnitt av den faktiska försäljningen från föregående period och prognosen från föregående period. Alpha är vikten som tillämpas på den faktiska försäljningen under föregående period. (1 ndash alfa) är den vikt som tillämpas på prognosen för föregående period. Värdena för alfaintervallet från 0 till 1 och faller vanligen mellan 0,1 och 0,4. Summan av vikterna är 1,00 (alfa (1 ndash alfa) 1). Du bör tilldela ett värde för utjämningskonstanten, alfa. Om du inte tilldelar ett värde för utjämningskonstanten beräknar systemet ett antaget värde som är baserat på antalet perioder av försäljningshistorik som anges i bearbetningsalternativet. alfa är lika med utjämningskonstanten som används för att beräkna det släta genomsnittet för den allmänna nivån eller storleken på försäljningen. Värdena för alfabetik från 0 till 1. n är lika med utbudet av försäljningshistorikdata som ingår i beräkningarna. I allmänhet är ett års försäljningshistorikdata tillräckligt för att uppskatta den allmänna försäljningsnivån. För detta exempel valdes ett litet värde för n (n 4) för att minska de manuella beräkningarna som krävs för att verifiera resultaten. Exponentiell utjämning kan generera en prognos som baseras på så lite som en historisk datapunkt. Minimikrav på försäljningshistorik: n plus antal tidsperioder som krävs för att utvärdera prognosens prestanda (perioder med bästa passform). Denna tabell är historia som används i prognosberäkningen: 3.2.12 Metod 12: Exponentiell utjämning med trend och säsonglighet Denna metod beräknar en trend, ett säsongsindex och ett exponentiellt jämnt medelvärde från försäljningsorderhistoriken. Systemet tillämpar sedan en prognos av trenden mot prognosen och justerar för säsongsindex. Denna metod kräver antalet perioder som bäst passar plus två års försäljningsdata, och är användbar för objekt som har både trend och säsong i prognosen. Du kan ange alfa - och beta-faktorn, eller få systemet att beräkna dem. Alfa - och beta-faktorer är den utjämningskonstant som systemet använder för att beräkna det jämnvärda genomsnittet för den allmänna nivån eller storleken på försäljningen (alfa) och trendkomponenten i prognosen (beta). 3.2.12.1 Exempel: Metod 12: Exponentiell utjämning med trend och säsonglighet Denna metod liknar Metod 11, Exponentiell utjämning, genom att ett jämnat medel beräknas. Metod 12 innehåller emellertid också en term i prognosekvationen för att beräkna en jämn trend. Prognosen består av ett jämn genomsnitt som justeras för en linjär trend. När det anges i bearbetningsalternativet justeras prognosen också för säsongsmässigt. Alpha motsvarar utjämningskonstanten som används vid beräkning av det jämnformade genomsnittet för den allmänna nivån eller storleken på försäljningen. Värden för alfabetik från 0 till 1. Beta är lika med utjämningskonstanten som används vid beräkning av det jämnde genomsnittet för trendkomponenten i prognosen. Värden för betavärdet från 0 till 1. Om ett säsongsindex används för prognosen. Alfa och beta är oberoende av varandra. De behöver inte uppgå till 1,0. Minimikrav på försäljningshistoria: Ett år plus antal tidsperioder som krävs för att utvärdera prognosprestandan (perioder med bästa passform). När två eller flera års historisk data är tillgänglig använder systemet två års data i beräkningarna. Metod 12 använder två exponentiala utjämningsekvationer och ett enkelt medelvärde för att beräkna ett jämnt medelvärde, en jämn trend och ett enkelt genomsnittligt säsongsindex. Ett exponentiellt slätat medelvärde: En exponentiellt jämn trend: Ett enkelt genomsnittligt säsongsindex: Figur 3-3 Enkelt medelstadsindex Indexet beräknas sedan med hjälp av resultaten av de tre ekvationerna: L är årstidens längd (L är 12 månader eller 52 veckor). t är den aktuella tidsperioden. m är antalet tidsperioder i prognosens framtid. S är den multiplikativa säsongsjusteringsfaktorn som indexeras till lämplig tidsperiod. Denna tabell visar historiken som används i prognosberäkningen: Det här avsnittet ger en översikt över prognosutvärderingar och diskuterar: Du kan välja prognosmetoder för att generera så många som 12 prognoser för varje produkt. Varje prognosmetod kan skapa en något annorlunda projicering. När tusentals produkter prognostiseras är ett subjektivt beslut opraktiskt när det gäller vilken prognos som ska användas i planerna för varje produkt. Systemet utvärderar automatiskt prestanda för varje prognosmetod som du väljer och för varje produkt som du förutspår. Du kan välja mellan två prestandakriterier: MAD och POA. MAD är ett mått på prognosfel. POA är ett mått på prognosförskjutning. Båda dessa prestandautvärderingstekniker kräver faktiska försäljningshistorikdata under en period som anges av dig. Perioden för den senaste historiken som används för utvärdering kallas en uthållningsperiod eller period med bästa passform. För att mäta prestanda för en prognosmetod, systemet: Använd prognosformulären för att simulera en prognos för historisk uthållighetsperiod. Gör en jämförelse mellan den faktiska försäljningsdata och den simulerade prognosen för hållbarhetsperioden. När du väljer flera prognosmetoder, förekommer samma process för varje metod. Flera prognoser beräknas för hållbarhetsperioden och jämfört med den kända försäljningshistoriken för samma period. Prognosmetoden som ger den bästa matchningen (bästa passformen) mellan prognosen och den faktiska försäljningen under uthållningsperioden rekommenderas för användning i planerna. Denna rekommendation är specifik för varje produkt och kan ändras varje gång du genererar en prognos. 3.3.1 Genomsnittlig Absolut Avvikelse Medel Absolut Avvikelse (MAD) är medelvärdet (eller medelvärdet) av de absoluta värdena (eller storleken) av avvikelserna (eller fel) mellan aktuell och prognosdata. MAD är ett mått på den genomsnittliga storleksgraden av fel som kan förväntas, med en prognosmetod och datahistorik. Eftersom absoluta värden används i beräkningen avbryter inte positiva fel negativa fel. När man jämför flera prognosmetoder är den med den minsta MAD den mest tillförlitliga för den produkten under den perioden som håller fast. När prognosen är opartisk och fel distribueras normalt finns det ett enkelt matematiskt förhållande mellan MAD och två andra gemensamma fördelningsfördelningar, som är standardavvikelse och Mean Squared Error. For example: MAD (Sigma (Actual) ndash (Forecast)) n Standard Deviation, (sigma) cong 1.25 MAD Mean Squared Error cong ndashsigma2 This example indicates the calculation of MAD for two of the forecasting methods. This example assumes that you have specified in the processing option that the holdout period length (periods of best fit) is equal to five periods. 3.3.1.1 Method 1: Last Year to This Year This table is history used in the calculation of MAD, given Periods of Best Fit 5: Mean Absolute Deviation equals (2 1 20 10 14) 5 9.4. Based on these two choices, the Moving Average, n 4 method is recommended because it has the smaller MAD, 9.4, for the given holdout period. 3.3.2 Percent of Accuracy Percent of Accuracy (POA) is a measure of forecast bias. När prognoserna är konsekventa för höga ackumuleras lager och lagerkostnader ökar. When forecasts are consistently too low, inventories are consumed and customer service declines. A forecast that is 10 units too low, then 8 units too high, then 2 units too high is an unbiased forecast. The positive error of 10 is canceled by negative errors of 8 and 2. (Error) (Actual) ndash (Forecast) When a product can be stored in inventory, and when the forecast is unbiased, a small amount of safety stock can be used to buffer the errors. In this situation, eliminating forecast errors is not as important as generating unbiased forecasts. However, in service industries, the previous situation is viewed as three errors. The service is understaffed in the first period, and then overstaffed for the next two periods. I tjänster är storleken av prognosfel vanligtvis viktigare än vad som är prognostiserad bias. POA (SigmaForecast sales during holdout period) (SigmaActual sales during holdout period) times 100 percent The summation over the holdout period enables positive errors to cancel negative errors. When the total of forecast sales exceeds the total of actual sales, the ratio is greater than 100 percent. Of course, the forecast cannot be more than 100 percent accurate. When a forecast is unbiased, the POA ratio is 100 percent. A 95 percent accuracy rate is more desirable than a 110 percent accurate rate. The POA criterion selects the forecasting method that has a POA ratio that is closest to 100 percent. This example indicates the calculation of POA for two forecasting methods. This example assumes that you have specified in the processing option that the holdout period length (periods of best fit) is equal to five periods. 3.3.2.1 Method 1: Last Year to This Year This table is history used in the calculation of MAD, given Periods of Best Fit 5: 3.4.2 Forecast Accuracy These statistical laws govern forecast accuracy: A long term forecast is less accurate than a short term forecast because the further into the future you project the forecast, the more variables can affect the forecast. A forecast for a product family tends to be more accurate than a forecast for individual members of the product family. Some errors cancel each other as the forecasts for individual items summarize into the group, thus creating a more accurate forecast. 3.4.3 Forecast Considerations You should not rely exclusively on past data to forecast future demands. These circumstances might affect the business, and require you to review and modify the forecast: New products that have no past data. Plans for future sales promotion. Changes in national and international politics. New laws and government regulations. Weather changes and natural disasters. Innovations from competition. You can use long term trend analysis to influence the design of the forecasts: Leading economic indicators. 3.4.4 Forecasting Process You use the Refresh Actuals program (R3465) to copy data from the Sales Order History File table (F42119), the Sales Order Detail File table (F4211), or both, into either the Forecast File table (F3460) or the Forecast Summary File table (F3400), depending on the kind of forecast that you plan to generate. Scripting on this page enhances content navigation, but does not change the content in any way.
No comments:
Post a Comment