Friday, 15 December 2017

Ma glidande medelvärde modell


Traditionell träplankring för ditt hem kommer alltid att vara det bästa valet i alla sidospår. Men du behöver rätt siding entreprenör för att hjälpa dig att välja den bästa trä siding med minst antal sidor underhåll. Det finns många olika typer av träskärning skapad med hjälp av underparmaterial. Don8217t låt din nexthellip Läs mer Professionella taktjänster och takreparationer till överkomliga priser Om du har takläckageproblem, vänta don8217t att kontakta en takentreprenör. Långa takläckor verkar ofarligt i början, men kan förvandlas till allvarliga problem snabbt. Med långvarig takläckage kan det orsaka mögelväxt, skadade tak, möbler. Ring oss idag om du behöver hjälp med att läsa Läs mer När du försöker minska din home8217s värmekylningsräkning, finns det inga bättre sätt att spara pengar än att ha nya Windows - eller träutbytesfönster installerade. Framför allt, med den nya federala skatteavdraget på upp till 1500 där8217s ingen anledning att inte. Att ha en vacker däck kommer alltid att ha en positiv avkastning på ditt fastighetsvärde. Att lägga ett däck är ett billigt sätt att utöka ditt bostadsutrymme. Den genomsnittliga kostnaden för att bygga ett däck är ungefär 7 000 och ger en avkastning på cirka 15 000 när du säljer ditt hem 8211 Inte till dåligt, rätt Så överväga att ha ahellip Läs mer Att välja rätt siding entreprenör är avgörande för alla sidospår. Oavsett om det går att installera vinylfasad över sidospår eller helt avlägsna din befintliga sidospår för ny sidospår. Att ha en professionell siding entreprenör som kan ge dig den bästa lösningen för den smidigare siding installerar kommer att spara mycket huvudvärk, tid andhellip Läs mer Vad våra kunder säger Mycket glad Jag ville bara uttrycka hur nöjd var med vårt nya tak och sömlösa takrännor. Mike och hans arbetare är mycket trevliga och välmana att vara runt. Jag kunde inte tro hur snabbt de slutade takläggning vårt hem och garage. De lämnade platsen renare än när de startade och skyddade våra buskar, växter som lovade. Var så nöjda med takinstallationen, att vi vill ha dem tillbaka för fönsterbyten. Tack Mike Visa sitt hem: takläggning Melrose MA mdash Robert Patricia Quinn, Melrose, MA MBM Construction är betygsatt 5 5 baserat på 3 recensioner. Att hitta rätt entreprenör ska inte vara smärtsam Att göra rätt bostadsförbättring eller ombyggnadsprojekt kan lägga till verkligt värde till någon typ av hem, om det görs korrekt och effektivt av en licensierad och försäkrad professionell. Använda högkvalitativa material som är energieffektiva, tilltalande och viktigast, tillförlitliga, till exempel lågviktigt vinylfönster. fönsterbyten. singeltak och anpassade däck kommer att lägga till verkligt värde. I de flesta fall kan du förvänta dig och omedelbar avkastning på din investering efter att ha gjort dessa hemförbättringar. Välj en entreprenör som kommer att få jobbet, gå igenom varje steg i projektet från början till slut utan några dolda extrafunktioner. Våra hemförbättringstjänster har gett oss en fördel över andra bostadsbyggnadsföretag. Att vara en av de bästa serviceleverantörerna inom sidospår, takläggning, utbytesfönster och rumtillägg. ger oss stor köpkraft genom våra leverantörer och kan i gengäld passera besparingarna till dig Så varför välja oss som ditt hembyggnadsentreprenör Vi lyssnar på era behov. Vi använder inte högtrycksförsäljning, eller försöker sälja dig något du inte behöver eller vill ha. Kommunikation är nyckeln till alla typer av renoveringsprojekt och vi vill att ditt projekt ska få det bästa möjliga resultatet. Du får ett detaljerat projekt beräknat slutförd - utan huvudvärk Du kommer också att få en av de bästa garantierna i hemförbättringsföretaget, om du någonsin behöver använda den. Vilken typ av hemförsörjningstjänster letar du efter Välj en takentreprenör som kommer att arbeta i ditt bästa intresse och inte i hur mycket vinst han kan göra genom att klippa hörn. Som takentreprenörer tror vi på att använda de bästa takbjälkarna och underlaget för att ge våra kunder sinnesro. För mer information om taktjänster, besök: Commercial Flat Roofing eller Residential Roofing Inte alla vinyl och trä sidospår är desamma. Välj en professionell siding entreprenör som kommer att hjälpa dig att förstå vilken typ av vinyl siding att undvika, och vad kommer att ge dig bästa valet för din pengar på lång sikt. Från en standard tryckbehandlad däck, mahagony däck, eller en komposit däck - vi har fått dig täckt. Läs mer om Däck och Porches DäckbyggareEducatorberedning Kandidatbedömning av prestanda (CAP) CAP utvärderar en lärarkandidats beredskap i förhållande till Professional Standards for Teachers (PSTs). CAP motsvarar Massachusetts Educator Evaluation-systemet för att bättre förbereda lärarkandidater och se till att de är redo att vara effektiva på dag ett. Det mäter lärarutbildningspraxis över en rad nyckelindikatorer som beskrivs i riktlinjerna för professionella standarder för lärare 160160 och stöder dem i att förbättra sin praxis baserat på resultaten. Framgångsrikt genomförande av GJP krävs för att slutföra alla lärarberedningsprogram. Sponsringsorganisationer är skyldiga att skicka till ESE alla formativa och summativa betyg för alla CAP-deltagare genom att ladda upp deras data till CAP Online Platform. Läs mer Frågor Varje sponsringsorganisation har en ESE-utbildad CAP Manager. För frågor angående inlämning av CAP-data eller online-plattformen, vänligen kontakta din CAP Manager. För andra frågor, vänligen maila edprepdoe. mass. edu. Senast uppdaterad: 6 december, 2016Introduktion till ARIMA: nonseasonal modeller ARIMA (p, d, q) prognoser ekvation: ARIMA-modeller är i teorin den vanligaste klassen av modeller för prognoser för en tidsserie som kan göras för att vara 8220stationary8221 genom differentiering (om nödvändigt), kanske i samband med olinjära omvandlingar, såsom loggning eller deflatering (om nödvändigt). En slumpmässig variabel som är en tidsserie är stationär om dess statistiska egenskaper är konstanta över tiden. En stationär serie har ingen trend, dess variationer kring dess medelvärde har en konstant amplitud, och det vinklar på ett konsekvent sätt. d. v.s. dess kortsiktiga slumpmässiga tidsmönster ser alltid ut i statistisk mening. Det sistnämnda tillståndet betyder att dess autokorrelationer (korrelationer med sina egna tidigare avvikelser från medelvärdet) förblir konstanta över tiden, eller likvärdigt, att dess effektspektrum förblir konstant över tiden. En slumpmässig variabel i denna blankett kan ses som en kombination av signal och brus, och signalen (om en är uppenbar) kan vara ett mönster av snabb eller långsam mean reversion eller sinusformig oscillation eller snabb växling i tecken , och det kan också ha en säsongskomponent. En ARIMA-modell kan ses som en 8220filter8221 som försöker separera signalen från bruset, och signalen extrapoleras därefter i framtiden för att få prognoser. ARIMA-prognosekvationen för en stationär tidsserie är en linjär (d. v.s. regressionstyp) ekvation där prediktorerna består av lags av de beroende variabla andorlagren av prognosfel. Det vill säga: Förutsatt värdet på Y är en konstant och en viktad summa av ett eller flera nya värden av Y och eller en vägd summa av ett eller flera nya värden av felen. Om prediktorerna endast består av fördröjda värden på Y. Det är en ren autoregressiv (8220self-regressed8221) modell, som bara är ett speciellt fall av en regressionsmodell och som kan förses med standard regressionsprogram. Exempelvis är en första-order-autoregressiv (8220AR (1) 8221) modell för Y en enkel regressionsmodell där den oberoende variabeln bara Y är försenad med en period (LAG (Y, 1) i Statgraphics eller YLAG1 i RegressIt). Om en del av prediktorerna är felaktiga, är en ARIMA-modell inte en linjär regressionsmodell, eftersom det inte går att ange 8220last period8217s error8221 som en oberoende variabel: felen måste beräknas periodvis när modellen är monterad på data. Tekniskt sett är problemet med att använda fördröjda fel som prediktorer att modellen8217s förutsägelser inte är linjära funktioner för koefficienterna. även om de är linjära funktioner i tidigare data. Så koefficienter i ARIMA-modeller som innehåller försenade fel måste uppskattas genom olinjära optimeringsmetoder (8220hill-climbing8221) istället för att bara lösa ett system av ekvationer. Akronymet ARIMA står för Auto-Regressive Integrated Moving Average. Lags av den stationära serien i prognosen ekvationen kallas quotautoregressivequot termer, lags av prognosfel kallas quotmoving averagequot termer och en tidsserie som behöver differentieras för att göras stationär sägs vara en quotintegratedquot-version av en stationär serie. Slumpmässiga och slumpmässiga modeller, autoregressiva modeller och exponentiella utjämningsmodeller är alla speciella fall av ARIMA-modeller. En nonseasonal ARIMA-modell klassificeras som en quotARIMA (p, d, q) kvotmodell där: p är antalet autoregressiva termer, d är antalet icke-säsongsskillnader som behövs för stationaritet och q är antalet fördröjda prognosfel i prediksionsekvationen. Prognosekvationen är konstruerad enligt följande. Först, låt y beteckna d: s skillnad på Y. Det betyder: Observera att den andra skillnaden i Y (d2-fallet) inte är skillnaden från 2 perioder sedan. Det är snarare den första skillnaden-av-första skillnaden. vilken är den diskreta analogen av ett andra derivat, dvs den lokala accelerationen av serien i stället för dess lokala trend. När det gäller y. Den allmänna prognostiseringsekvationen är: Här definieras de rörliga genomsnittsparametrarna (9528217s) så att deras tecken är negativa i ekvationen, enligt konventionen införd av Box och Jenkins. Vissa författare och programvara (inklusive R-programmeringsspråket) definierar dem så att de har plustecken istället. När faktiska siffror är anslutna till ekvationen finns det ingen tvetydighet, men det är viktigt att veta vilken konvention din programvara använder när du läser utmatningen. Ofta anges parametrarna av AR (1), AR (2), 8230 och MA (1), MA (2), 8230 etc. För att identifiera lämplig ARIMA-modell för Y. börjar du med att bestämma sorteringsordningen (d) behöver stationera serierna och ta bort säsongens bruttoegenskaper, kanske i kombination med en variationsstabiliserande transformation, såsom loggning eller avflöde. Om du slutar vid denna tidpunkt och förutsäger att den olika serien är konstant, har du bara monterat en slumpmässig promenad eller slumpmässig trendmodell. Den stationära serien kan emellertid fortfarande ha autokorrelerade fel, vilket tyder på att vissa antal AR-termer (p 8805 1) och eller några nummer MA-termer (q 8805 1) också behövs i prognosekvationen. Processen att bestämma värdena p, d och q som är bäst för en given tidsserie kommer att diskuteras i senare avsnitt av anteckningarna (vars länkar finns längst upp på denna sida), men en förhandsvisning av några av de typerna av nonseasonal ARIMA-modeller som vanligtvis förekommer ges nedan. ARIMA (1,0,0) första ordningens autoregressiva modell: Om serien är stationär och autokorrelerad kanske den kan förutsägas som en multipel av sitt eget tidigare värde plus en konstant. Prognosekvationen i detta fall är 8230, som Y är regresserad i sig själv fördröjd med en period. Detta är en 8220ARIMA (1,0,0) constant8221 modell. Om medelvärdet av Y är noll, skulle den konstanta termen inte inkluderas. Om lutningskoefficienten 981 1 är positiv och mindre än 1 i storleksordningen (den måste vara mindre än 1 i storleksordningen om Y är stillastående), beskriver modellen medelåterkallande beteende där nästa period8217s värde bör förutses vara 981 1 gånger som långt ifrån medelvärdet som detta period8217s värde. Om 981 1 är negativ förutspår det medelåterkallande beteende med teckenväxling, dvs det förutspår också att Y kommer att ligga under den genomsnittliga nästa perioden om den är över medelvärdet denna period. I en andra-ordningsautoregressiv modell (ARIMA (2,0,0)) skulle det finnas en Y t-2 term till höger också, och så vidare. Beroende på tecken och storheter på koefficienterna kan en ARIMA (2,0,0) modell beskriva ett system vars medföljande reversering sker på ett sinusformigt oscillerande sätt, som en massans rörelse på en fjäder som utsätts för slumpmässiga stötar . ARIMA (0,1,0) slumpmässig promenad: Om serien Y inte är stillastående är den enklaste möjliga modellen för en slumpmässig promenadmodell, vilken kan betraktas som ett begränsande fall av en AR (1) - modell där den autogegrativa koefficienten är lika med 1, dvs en serie med oändligt långsam medelbackning. Förutsägningsekvationen för denna modell kan skrivas som: där den konstanta termen är den genomsnittliga period-till-period-förändringen (dvs. den långsiktiga driften) i Y. Denna modell kan monteras som en icke-avlyssningsregressionsmodell där första skillnaden i Y är den beroende variabeln. Eftersom den innehåller (endast) en nonseasonal skillnad och en konstant term, klassificeras den som en quotARIMA (0,1,0) modell med constant. quot. Den slumpmässiga walk-without-drift-modellen skulle vara en ARIMA (0,1, 0) modell utan konstant ARIMA (1,1,0) annorlunda första ordningens autoregressiva modell: Om fel i en slumpmässig promenadmodell är autokorrelerade kanske problemet kan lösas genom att lägga en lag av den beroende variabeln till prediktionsekvationen - - ie genom att regressera den första skillnaden av Y på sig själv fördröjd med en period. Detta skulle ge följande förutsägelsesekvation: som kan omordnas till Detta är en första-orders autregressiv modell med en ordning av icke-säsongsskillnader och en konstant term, dvs. en ARIMA (1,1,0) modell. ARIMA (0,1,1) utan konstant enkel exponentiell utjämning: En annan strategi för korrigering av autokorrelerade fel i en slumpmässig promenadmodell föreslås av den enkla exponentiella utjämningsmodellen. Minns att för några icke-stationära tidsserier (t ex de som uppvisar bullriga fluktuationer kring ett långsamt varierande medelvärde), utförs slumpmässiga promenadmodellen inte lika bra som ett glidande medelvärde av tidigare värden. Med andra ord, istället för att ta den senaste observationen som prognosen för nästa observation, är det bättre att använda ett genomsnitt av de sista observationerna för att filtrera bort bullret och mer exakt uppskatta det lokala medelvärdet. Den enkla exponentiella utjämningsmodellen använder ett exponentiellt vägt glidande medelvärde av tidigare värden för att uppnå denna effekt. Förutsägningsekvationen för den enkla exponentiella utjämningsmodellen kan skrivas i ett antal matematiskt ekvivalenta former. varav den ena är den så kallade 8220error correction8221-formen, där den föregående prognosen justeras i riktning mot det fel som det gjorde: Eftersom e t-1 Y t-1 - 374 t-1 per definition kan det skrivas om som : vilket är en ARIMA (0,1,1) - utan konstant prognosekvation med 952 1 1 - 945. Det innebär att du kan passa en enkel exponentiell utjämning genom att ange den som en ARIMA (0,1,1) modell utan konstant, och den uppskattade MA (1) - koefficienten motsvarar 1-minus-alfa i SES-formeln. Minns att i SES-modellen är den genomsnittliga åldern för data i prognoserna för 1-tiden framåt 1 945. Det betyder att de tenderar att ligga bakom trender eller vändpunkter med cirka 1 945 perioder. Det följer att den genomsnittliga åldern för data i de 1-prognos framåt av en ARIMA (0,1,1) utan konstant modell är 1 (1 - 952 1). Så, till exempel, om 952 1 0,8 är medelåldern 5. När 952 1 närmar sig 1 blir ARIMA (0,1,1) utan konstant modell ett mycket långsiktigt rörligt medelvärde och som 952 1 närmar sig 0 blir det en slumpmässig promenad utan driftmodell. What8217s det bästa sättet att korrigera för autokorrelation: Lägga till AR-termer eller lägga till MA-termer I de tidigare två modellerna som diskuterats ovan fixades problemet med autokorrelerade fel i en slumpmässig promenadmodell på två olika sätt: genom att lägga till ett fördröjt värde av de olika serierna till ekvationen eller lägga till ett fördröjt värde av prognosfelet. Vilket tillvägagångssätt är bäst En tumregel för denna situation, som kommer att diskuteras mer i detalj senare, är att positiv autokorrelation vanligtvis behandlas bäst genom att addera en AR-term till modellen och negativ autokorrelation behandlas vanligtvis bäst genom att lägga till en MA term. I affärs - och ekonomiska tidsserier uppstår negativ autokorrelation ofta som en artefakt av differentiering. (I allmänhet minskar differentieringen positiv autokorrelation och kan även orsaka en växling från positiv till negativ autokorrelation.) Således används ARIMA (0,1,1) - modellen, i vilken skillnad åtföljs av en MA-term, oftare än en ARIMA (1,1,0) modell. ARIMA (0,1,1) med konstant enkel exponentiell utjämning med tillväxt: Genom att implementera SES-modellen som en ARIMA-modell får du viss flexibilitet. För det första får den uppskattade MA (1) - koefficienten vara negativ. Detta motsvarar en utjämningsfaktor som är större än 1 i en SES-modell, vilket vanligtvis inte är tillåtet med SES-modellproceduren. För det andra har du möjlighet att inkludera en konstant term i ARIMA-modellen om du vill, för att uppskatta en genomsnittlig trendfri noll. ARIMA-modellen (0,1,1) med konstant har förutsägelsesekvationen: Prognoserna från den här modellen är kvalitativt likartade som i SES-modellen, förutom att banan för de långsiktiga prognoserna typiskt är en sluttande linje (vars lutning är lika med mu) snarare än en horisontell linje. ARIMA (0,2,1) eller (0,2,2) utan konstant linjär exponentiell utjämning: Linjära exponentiella utjämningsmodeller är ARIMA-modeller som använder två icke-säsongsskillnader i samband med MA-termer. Den andra skillnaden i en serie Y är inte bara skillnaden mellan Y och sig själv i två perioder, men det är snarare den första skillnaden i den första skillnaden, dvs. Y-förändringen i Y vid period t. Således är den andra skillnaden av Y vid period t lika med (Y t - Y t-1) - (Y t-1 - Y t-2) Y t - 2Y t-1 Y t-2. En andra skillnad av en diskret funktion är analog med ett andra derivat av en kontinuerlig funktion: det mäter kvotccelerationquot eller quotcurvaturequot i funktionen vid en given tidpunkt. ARIMA-modellen (0,2,2) utan konstant förutspår att den andra skillnaden i serien motsvarar en linjär funktion av de två sista prognosfel: som kan omordnas som: där 952 1 och 952 2 är MA (1) och MA (2) koefficienter. Detta är en generell linjär exponentiell utjämningsmodell. väsentligen samma som Holt8217s modell, och Brown8217s modell är ett speciellt fall. Den använder exponentiellt vägda glidande medelvärden för att uppskatta både en lokal nivå och en lokal trend i serien. De långsiktiga prognoserna från denna modell konvergerar till en rak linje vars lutning beror på den genomsnittliga trenden som observerats mot slutet av serien. ARIMA (1,1,2) utan konstant dämpad trend linjär exponentiell utjämning. Denna modell illustreras i de bifogade bilderna på ARIMA-modellerna. Den extrapolerar den lokala trenden i slutet av serien men plattar ut på längre prognoshorisonter för att presentera en konservatismskampanj, en övning som har empiriskt stöd. Se artikeln om varför Damped Trend worksquot av Gardner och McKenzie och artikeln "Rulequot Rulequot" av Armstrong et al. för detaljer. Det är i allmänhet lämpligt att hålla fast vid modeller där minst en av p och q inte är större än 1, dvs försök inte passa en modell som ARIMA (2,1,2), eftersom det här sannolikt kommer att leda till övermontering och quotcommon-factorquot-problem som diskuteras närmare i noterna om den matematiska strukturen för ARIMA-modeller. Implementering av kalkylark: ARIMA-modeller som de som beskrivs ovan är enkla att implementera på ett kalkylblad. Förutsägningsekvationen är helt enkelt en linjär ekvation som refererar till tidigare värden av ursprungliga tidsserier och tidigare värden av felen. Således kan du ställa in ett ARIMA-prognoskalkylblad genom att lagra data i kolumn A, prognosformeln i kolumn B och felen (data minus prognoser) i kolumn C. Förutsättningsformeln i en typisk cell i kolumn B skulle helt enkelt vara ett linjärt uttryck som hänvisar till värden i föregående rader av kolumnerna A och C multiplicerat med lämpliga AR - eller MA-koefficienter lagrade i celler på annat håll på kalkylbladet.

No comments:

Post a Comment